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Abstract

An on-demand single-photon source is a key requirement for scaling many optical quantum
technologies. A promising approach to realize an on-demand single-photon source is to multiplex an
array of heralded single-photon sources using an active optical switching network. However, the
performance of multiplexed sources is degraded by photon loss in the optical components and the
non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a
general multiplexed single-photon source with lossy components and derive expressions for the
output probabilities of single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider their tradeoffs in design
and performance. To assess the effect of lossy components on near- and long-term experimental goals,
we simulate the multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of switches with
~0.2—0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of
efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering
the possibility of unlocking new classes of experiments and technologies.

1. Introduction

An on-demand single-photon source is a key requirement for many optical quantum technologies, including
quantum key distribution schemes using quantum repeaters [ 1], quantum metrology using photon-number
states [2, 3], analog quantum simulators [4], and the boson sampling machine [5]. The ultimate optical
quantum technology may be the quantum computer [6], capable of efficient integer factorization and digital
quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand
photon source in order to efficiently generate large quantum resource states [9, 10].

While research efforts continue in developing on-demand single-photon sources using atomic systems,
achieving high spectral purity and high collection efficiency simultaneously remains a challenge [11]. An
alternative approach commonly used in quantum optics experiments is heralded single-photon sources
(HSPSs) such as those based on spontaneous parametric down-conversion (SPDC) or spontaneous four-wave
mixing: parametric processes which use a pump laser in a nonlinear material to spontaneously generate photon
pairs (figure 1(a)). Detecting one of the photons using a single-photon detector will herald the presence of the
paired photon to be input into the quantum circuit. Parametric sources are capable of producing single photons
with high spectral purity [11], benefit from a well-defined wave vector leading to high collection efficiency [12],
and have no mode-mismatch when integrated on the same monolithic substrate as the subsequent circuit.
However, parametric sources are inherently inefficient, due to the thermal nature of the output statistics and the
requirement to keep the multi-photon emissions low, resulting in a maximum single-photon output probability
0f25% [13]. For applications requiring many single photons, the probability of successfully generating N single
photons simultaneously with N HSPSs decreases as N becomes large, severely limiting the size of practical
circuits.
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Figure 1. (a) Heralded single-photon source (HSPS). A laser pumps a parametric pair source which spontaneously emits a signal and
anidler photon. A filter separates the pump, signal, and idler. The idler photon is detected using a single-photon detector (SPD),
heralding the presence of the signal photon. (b) A general multiplexed (MUX) single-photon source. N HSPSs are pumped
simultaneously; the idler photons are detected while the signal photons are stored in along delay line. A classical logic unit determines
the configuration for the N x 1 switching network based on the detection signals, routing a successfully generated single photon to
the output.

An approach to overcome all of the scaling problems with HSPSs is the multiplexed (MUX) single-photon
source [14], which uses an array of HSPSs, delay lines, electronics for classical logic operations, and an active
optical switching network to approximate a true on-demand source (figure 1(b)). Using an array of HSPSs as a
collective unit means that the probability that at least one of the HSPSs emits a single photon is high, while a
switching network driven by the heralding signals is used to route the generated photon into a specific spatial-
temporal output mode. This results in the near-deterministic generation of single photons, allowing for much
larger quantum circuits than could be feasibly built with HSPSs without active multiplexing. MUX sources
inherit the same benefits as parametric HSPSs, including their mature theoretical and experimental
investigation, and are especially appealing due the prospects of a fully integrated device with existing fabrication
processes.

Several theoretical schemes have been previously investigated [15-23] and experimental work using bulk
[24] and integrated [25, 26] components has been demonstrated. Previous work has highlighted the
fundamental constraints for creating pure states using parametric processes assuming ideal MUX components
[13]. However, in real physical settings, non-ideal components will limit the efficiency and output fidelity of
MUX sources. The most significant sources of error in multiplexed sources are likely to be photon loss in the
optical components and the non-unit detection efficiency of the heralding detectors (which can also be viewed as
photon loss). Assessing the suitability of a MUX sources using lossy components is an important consideration
for many quantum photonic technologies, in particular the large-scale quantum computer, as fault-tolerance
thresholds will place demands on the required source efficiency and fidelity [ 10, 27].

The aim of this work is to assess the impact of photon loss on the performance of multiplexed single-photon
sources. We start by detailing the heralded single photon source (HSPS), which is a key building block of all the
MUX sources, and include the effect of photon loss and non-unit efficiency number-resolving and non-number
resolving detectors. We extend this description to general multiplexed single-photon sources with lossy
components and derive expressions for single-photon and multi-photon emission probabilities. We then apply
these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and
performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate
the multiplexed sources when used for many-photon state generation under various amounts of component
loss. We conclude by discussing the prospects of using the different MUX architectures with realistic
components for near- and long-term experimental goals.

2. The heralded single photon source

2.1. Theory and figures of merit

All the MUX sources we consider are composed of a core component called the HSPS (figure 1(a)). AHSPSisa
non-deterministic source with alogic output set to 1 when it emits a photon and set to 0 otherwise. We consider
aHSPS composed of (1) a photon pair generation stage in which photons are produced at non-degenerate
wavelengths A (signal) and 4; (idler), (2) a filter which removes the pump and separates the signal from the idler
into two different paths, and (3) a detector on the idler arm which heralds the emission of the signal photon. For
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now, we assume the photon pairs are generated as a biphoton two-mode squeezed vacuum state such that their
joint spectrum is disentangled [28]. Furthermore, we assume that all signal photons produced from different
HSPSs are perfectly indistinguishable in all degrees of freedom except for the spatial mode in which they are
generated.

The source is characterized by a squeezing parameter &, determined by the pump intensity and strength of
the nonlinearity, a trigger probability pig, the probability for the heralded state to be a single photon p;ngie, also
called the state fidelity or heralding efficiency, and the probability for the heralded state to be contaminated with
multiple photons, p,,,1i. Quantifying multi-photon contamination separately from vacuum emissions is
especially important; vacuum emissions can be treated as effective loss in a linear optical quantum circuit while
multi-photon events can result in other types of errors, and linear optical quantum circuits have been shown to
have a much higher tolerance to loss than to other errors [ 10].

We aim at deriving expressions for pyig, Psingle» ad Pyl for the case in which the heralding detector is
number-resolving and the case in which the detector is non-number resolving (also called a threshold detector).
The state produced by the pair source, assuming spectral disentanglement, is of the form [29]:

) = 1= [ER]10)i10) + & [1)i]1)s + D &" [mhiln). |, (1

n=2

where i and s are the idler and signal modes. In practice, sources and filters have losses, and the heralding detector
does not have a unit efficiency detection. We call #, the global collection efficiency on the idler arm accounting
for all these effects, and 7, is the overall transmission on the signal arm accounting for losses in the sources and
filters. Each lossy component is modelled as an ideal component preceded by an ideal beamsplitter with a non-
unit transmission probability. The full state, after accounting for losses and tracing over loss modes, can
therefore be written:

o n n
. n—p n—k
p=(1-1R)| Xler X X ctnr (1=n) " ChnF(1 =) ppul (2)
n=0 p=0k=0
where ﬁp’k = |p)ilk)s (pl; (k|; and C¥ is the binomial coefficient.
This expression will be the starting point to derive p .. > Pingle p» a0d Py p for the two detection schemes.

In this paper we use the subscript D on expressions to indicate the type of detector considered: NRD for number-
resolving detector and TD for threshold detector. Detailed derivations can be found in appendix A.

2.2.Heralded single-photon source parameters

Threshold detector

Starting with the reduced state (equation (2)) and tracing out the signal mode, the probability for the
detector on the idler arm to trigger is given by summing all the contribution of the states having at least one
photon and is given by:

117 n;
Pyigtp = N (3)
- eP(1-n,)
The heralded state in the signal arm is expressed, renormalizing by dividing by p, ; o TD? 8
A (L= (oo s I ik
Pheradeap = ————| D IEP" Y D Cln, (1 - ni) Cung ( 1- ns) ks kel |- (4)
trig TD n=1 p=1k=0

We can compute the probability that the heralded state is a single-photon using p,; deTD = (1ls Pheralded o |1)st

[1- (1 (1=n)) (- 0) J[1 - 1P (1= 0)]

PsingleTD = (1 - |‘§|2)”s > - (5)
[1=tep(1=n) 1 -1ep(1=n)(1-n)]
The probability that the heralded state contains multi-photon contamination is given by
pmulti ™ — Zm:z <m |5 ﬁheralded TD |ﬂ’l>5:
Zt
Prmuitp = - psingle D> (6)
trig TD
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with

L, (1=n)(1-m)
L=leP 1-1ep(1-n)(1-n)
(1_’71‘) (1_”5)

_ _ . (7)
L= eP(1=m) 1-leP(1-n)

Zro = (1 - F) I£P

Note that we can also similarly derive an expression for the probability that the heralded state is any Fock number
state using (1|5 Pperarded D 11)s-

Number-resolving detector

We now consider the case in which the detector is number resolving. In practice, we only need to discriminate
the single-photon state from the vacuum and from states having two or more photons. Therefore, the detector
does not need to be able to distinguish between twoand N > 2 photon states. Starting again from equation (2),
tracing out the signal mode and calculating the probability to get only one photon gives:

(1= 1£P) &P,

Puignrp = T (8)
(1= (1=n)1er)
The corresponding heralded state is:
(1-121) (& h_1 g "k
Pheralded NRD = ————1]; Z|f|2"”(1 - ’11') ZC,fnsk(l - ’75) |k)s (Kl |- (9)
trig NRD n=1 k=0
As in the previous case, we can compute the probability the heralded state contains one photon
Psingle NRD — <1 |5 léheralded NRD | 1>S:
2 (1 +(1=n)(1=-n) Iélz)
psingleNRD = (1 - (1 _771') |5| ) s (10)

7 |
(1= (1=n)(1=n)1cp)
Not surprisingly, contrary to the previous case, number-resolving detectors enable unit fidelity in the absence of
losses (pg;,, gleNRD = 1 when 5; = 5, = 1). The probability for the heralded state to contain multi-photon

contamination is given by:

Pt nro ='751_ (1= n)(ler (s —'7,-))2
i (1-1er(1=n)(1-n)Y

We can again similarly derive an expression for the probability that the heralded state is any Fock number state
using (1ls Pheralded NrD 17)s:

- psingle NRD* (1 1)

2.3. Discussion

We now have a complete framework for characterizing any HSPS. We assumed no joint spectral entanglement
between photons in a generated photon pair. However, we can account for joint spectral entanglement by
redefining the fidelity as ps’mgle b = Psingle p X P Where Pis the purity of the heralded single photon. Recall that,

in the ideal case of lossless components, the probability p, ; ¢ NRD of heralding a unit fidelity single photon is

bounded by 0.25 (achieved when |£|> = 0.5 maximizes the probability | £ |* ( 1—|& |2)). Clearly, HSPS do not
suffice on their own to function as a near-deterministic single-photon source, providing in the ideal scenario one
photon every four pulses on average.

As we will see in section 3, the probability of multi-photon contamination from individual HSPSs
approximates the probability of multi-photon contamination from MUX sources. We therefore graph p_ ...
asa function of idler transmission #; for several squeezing parameters |£|* in figures 2(a) and (b). To focus on the
effect of #;, we take #, = 1; the plots therefore serve as an upper bound on p,_ ;.. o. We see that threshold
detectors only reliably herald a single-photon state for very low levels of squeezing, while number-resolving
detectors achieve a much lower level of contamination with the same squeezing parameter. With number-
resolving detectors, 10% loss in the idler arm (#; = 0.90), and pumping with Ppair = 0.09 (|£]* = 0.1), the multi-
photon contamination level is almost an order of magnitude lower (~0.02) compared with that of threshold
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Figure 2. Probability of multi-photon emission py,,; from a HSPS as a function of the efficiency in the idler arm #; for different
squeezing parameters | > using (a) a threshold detector, (b) a number-resolving detector.

detectors with the same squeezing parameter (~0.1). Despite their enhanced performance compared to
threshold detectors, number-resolving detectors with the highest pumping parameters are not immune to loss;
even 10% loss in the idler arm with Ppair = 0.25 (I€]* = 0.5) results in a probability of multi-photon
contamination of ~0.1. Achieving a lower level of contamination requires a reduction in either the squeezing
parameter or the loss in the idler arm.

In section 3 we will show that a practical multiplexed source will require operation in the strong pumping
regime, thus showing that threshold detectors can not be used for multiplexed sources with the highest efficiency
and low levels of multi-photon contamination. For this reason, and due to space constraints, we will only
consider number-resolving detectors in the remainder of the paper. However, the derived expression for
threshold detectors can still be used in the framework for multiplexed sources.

3. Multiplexed single-photon sources

3.1. General considerations
A general MUX source can be characterized in a similar way to the HSPS. The probability per clock-cycle that at
least one HSPS in an array of N HSPSs triggers is given by:

P =1 = (1= py ) (12)

and the probability per clock-cycle that at least one source emits a triggered single-photon is:

n =psing1e(1 = (1= Pug )N) (13)

pj can in principle be made arbitrarily close to one, such that a near-deterministic single-photon source (>99%
emission probability) can be made out of 17 HSPSs using a lossless switching network to route the photon from
the HSPS which triggered to the output [13]. However, in any implementation, the switching network will have
loss due to the optical delay lines—required for allowing enough time to reconfigure the switching network
upon trigger from the HSPS—and the intrinsic loss of the switch components, for example 2 X 2 couplers and
phase modulators for MZI-type switches (we will assume all 2 X 2 switches are MZI-type switches). The network
1088, 1 ework (1), is proportional to the number of sources used in the MUX source, since additional sources
require a larger switching network for routing. Provided the losses are equally distributed in the network (this
assumption holds for two of the three schemes presented in the further sections), the network loss applies the
same amount ofloss to every HSPS.

For switching networks with balanced loss, the probability per clock-cycle for a MUX source to emit a single
photon, conditioned on the MUX source triggering, is given by pﬁ‘fnléfé, and is calculated from equation (5) or (10)
(depending on the type of detector) by replacing 7, in the expression with the full transmission 7,17, ;..o (IN)-
Similarly, the probability for a MUX source to emit multi-photon contamination, conditioned on the MUX
source triggering, is given by pha, and is calculated from either equation (6) or (11) (depending on the type of
detector) by replacing #, in the expression with the full transmission #,#, .o (IN)- Using this definition of
DPinate it then follows that the probability per clock-cycle for a multiplexed source to emit a triggered single-
photon can be written:
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Figure 3. (a) Log-tree MUX source. The trigger output of each HSPS is linked to logic circuit which configures the setting of each
switch in the network. (b), (¢) Maximal probability of triggered single-photon emission and optimal number of HSPSs per MUX
source as a function of the switch loss. Each color represents a given probability to trigger pyi,. The plain lines (left axis) represent the
maximal single-photon emission probability for a given switch loss. The dashed line (right axis) is the number of HSPSs needed to
attain the maximal single-photon emission probability for a given switch loss. (c) Shows detail at low switch losses (<0.2 dB). We plot
the graphs with g, = land py, . = 1.

— ~MUX MUX
dmux = psingle x ptrig : (14)

For switching networks with balanced loss, a convenient lower bound for this probability is given by:

* MUX
Ivux = psingle X ptrig X Mnetwork (N)’ (15)

which uses only the single-photon emission probability from the HSPSs and neglects cases in which multi-
photon contamination from the HSPS reduces to a single-photon due to loss from the switching network.

For a multiplexed source pumped by a pulsed laser with repetition rate R, the emission rate of triggered
single-photons is:

Ryux = R X amux-

Large-scale linear optical experiments require M multiplexed sources in parallel for generating M single
photons. The M-photon state is heralded by the simultaneous triggering of all M MUX sources (at least one
HSPS per MUX source). For a source pumped by a pulse laser with repetition rate R, the M-photon generation
rateis:

Rifux = R X (qyu)M- (16)
The multi-photon contamination probability conditioned on heralding the M-photon state is:

MUXM _ 1 _ (1 _PMUX)M' (17)

p multi multi

The analysis so far has been kept general, and can be applied to any MUX source with balanced network loss.
In the next sections we focus on three specific architectures.

While photon loss and inefficient detectors are likely to be the dominant source of error for the near-term
implementation of MUX sources, we note that there are other sources of error which will also have an effect on
MUX performance. These include dark counts from single-photon detectors [30], mode-mismatch [31], and
circuit faults. These effects are left to a future analysis. We also assume that the detector deadtimes are smaller
than the system clock period, and therefore loss effects due to detector deadtimes are not considered in our
current work.

3.2. Log-tree source
The first MUX implementation we consider is called the log-tree source. In this scheme, the output optical ports

of N HSPS sources are connected to an N X 1 reconfigurable switch, which is a logarithmic tree composed of

2 x 2 switches (figure 3(a)). Using N sources requires a log tree with a depth of [ I;ZI—IZ—I 2 x 2 switches in order to

route any of the N sources to the output. The signal photons are stored in delay lines as the electrical trigger
output is sent to a logic circuit and the network configuration is determined and set.

The network loss is given by 7, .work (IN) = 17[11%]] Ngelay Where 7 is the transmission of a switch in the log tree
network and 74, is the loss of the delay line. From equation (14), the probability per clock-cycle for the log-tree
multiplexed source to emit a triggered single-photon is given by:

6
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Figure 4. Generalized Mach—Zehnder MUX source. (a) Multiplexing N HSPSs using a generalized MZI composed of two N x N
balanced splitters enclosing N arms each having a tuneable phase ¢;,. (b) Recursive definition of the N x N balanced coupler. A
2N X 2N balanced coupler is composed of N 2 X 2 couplers each having one arm connected to a N X N balanced coupler and the
other arm connected to another NxX N balanced coupler. (¢) Examples of circuit layouts for the 4 X 4 and 8 x 8 balanced couplers.

Qygee = Psiie;e(l - (1 = Puig )N) (18)

and has the lower bound (equation (15)):

. N\ [inx
iree = psingle(1 - <1 - ptrig) )ﬂ[l"z]ndelay‘ (19)

The optimal number of sources for a given switch loss is found by numerically finding the N which maximizes
equation (19). To study the effect of switchingloss in isolation from other sources of loss, the optimal Nand q,; .
with 774, = 1and pg, . = 1areplotted asa function of the 2 x 2 switch loss in figures 3(b) and (c). As
expected, we see that the probability of triggered single-photon emission tends towards 1 in the limit of low
switching loss for all trigger probabilities. The number of HSPSs required in the weak pump regime (pyig < 0.01)
islikely to be impractical: obtaining a probability of single photon emission g7 . > 0.9 with p;, = 0.01requires

512 sources in parallel and switches with 0.05 dB loss (~0.989 transmission). Obtaining q," . > 0.9 with

Pyig = 01 requires 64 sources in parallel and switches with 0.07 dB loss (~0.984 transmission). With the
maximum trigger probability p,,. = 0.25, only 16 sources and switches with 0.1 dBloss (~0.977 transmission)
arerequired.

Because the switching network is balanced, the probability for a triggered log-tree MUX source to emit
multi-photon contamination gy is calculated as explained in section 3.1 using 77, ..o (N) = 71[ lﬁ‘ﬂﬂdday-
Since the loss from the switching network can only decrease pyai, the multi-photon contamination
probabilities for the HSPSs in figures 2 (a) and (b) serve as valid upper bounds for pﬁ;ﬁf We will consider these
expressions further when we consider M-photon state generation in section 4.

3.3. Generalized Mach—Zehnder interferometer
Like the log-tree source, this scheme also uses N HSPS sources connected toa N X 1 reconfigurable switch
(figure 4(a)). However, here the N X 1 switch is a generalized Mach—Zehnder interferometer (GMZ)-
composed of two N x N balanced splitters enclosing N phase modulators. N phase modulators are sufficient to
route any input to a given fixed output port. This is achieved by setting half of the phases to 7 and setting the
other halfto 0, or by applying 0 to all the phases to obtain a full swap. The N X N passive splitter can either be a
Nx NMMI or built from of 2 x 2 couplers. Fabricating large N X N balanced MMIs with low loss is challenging,
so we propose using cascaded couplers (having a reflectivity of 0.5) and crossings as shown in figures 4(b)
and (c).

The lower bound on the probability to emit a triggered single photon g, ,,, is, from equation (15):

N
* 2
domz = Psingle ’7de1ay(1 - (1 - ptrig> )'7 modulatorTNx N> (20)

where 7, qulator 19 the transmission of the modulator section and #,,  is the loss induced by the balanced NxN

switch. If implemented with couplers with transmission 77,1, then 77y, = ncfl;}er. To show the effect of

7
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Figure 5. GMZ MUX source: maximal probability of triggered single-photon emission and optimal number of HSPSs per MUX
source as a function of the switch loss. Each color represents a given probability to trigger pyg. The plain lines (left axis) represent the
maximal single-photon emission probability for a given coupler loss. The dashed line (right axis) is the number of HSPSs needed to
attain the maximal single-photon emission probability for a given coupler loss. (c) Shows detail at low coupler losses (<0.2 dB). We
plOt the graphs with ”delay’r/modulamr’ and psingle =1

Table 1. Comparison of the requirements and component depth between the log tree and generalized MZI architectures as a function of the
number of HSPSs N. The first two columns give the total number of component of the given type required for building the switch. The last
two columns provide the depth of the circuit for each component—or the number of components of each type that each photon has to go
through.

Sourcetype  Total number of phase modulators ~ Total number of directional couplers ~ Phase modulator depth ~ Coupler depth

Log tree N-1 2(N-1) log,(N) 2 log,(N)

N (N+logy () 1) 1 2(N-1)
4

GMZ N

coupler loss, the optimal number of sources to achieve a probability of triggered single photon emission g, .,
with Psingle ndelay Mmodulator = Lis plOtted in ﬁgure 5.

The choice between the log tree and the GMZ depends on the dominant component loss. In the GMZ, the
photon must pass only a single phase modulator, instead of a logarithmic number as in the log-tree scheme.
However, the GMZ requires a linear scaling in the number of directional couplers the photon passes through,
instead of the logarithmic scaling given by the log tree scheme. Also, the GMZ requires O (n%) couplers while the
total number of components for the log tree scales linearly. Table 1 shows a summary of the different resource
scalings for the two architectures.

Since the switching network is balanced, the exact probability for emitting a triggered single-photon qggyz
and the output state multi-photon contamination probability pSiniz are calculated as explained in section (3.1)
USING Myetork = Mdelay Tmodulator Ny, We will consider these expressions further in section 3.

3.4. Chained sources

In this scheme, unit cells—each composed of a HSPS, a delay line, and a 2 X 2 switch—are cascaded to build a
chain of sources (figure 6(a)). The electrical output trigger of the HSPS directly drives a switch which routes the
emitted photon to the output port while the input port is routed towards a blocked path. As in the other
schemes, an optical delay line allows sufficient time for the detection of the idler photon and the configuration of
the switch.

The chained scheme benefits from very simple control logic requirements, since each switch is only driven
by one HSPS. For switches driven by voltage, for example, the logic consists only of amplifying the trigger signal
from the HSPS to the required switching voltage. This switching logic privileges the HSPS emitting closest to the
output of the chain, and hence the photon from the HSPS suffering the least from the losses. As an example, if
two cells are cascaded and cell 2 triggers before cell 1, the switch corresponding to cell 1 will remove the photon
from the HSPS of cell 2 and replace it with a new photon from the HSPS of cell 1.

Since the switching network applies different amounts of loss to the different HSPSs, we cannot derive the
lower bound for the single-photon emission probability q 3 . using the method given in section 3.1. We
therefore show a different derivation here. Given a chain of N unit cells, assuming HSPSs with a probability of
triggering pyig, a probability for the heralded state to be a single photon pg;ng1e, and switches with transmission 7,
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Figure 6. Chain MUX source and performance. (a) Figure 6: array of chained sources. N unit cells are cascaded to build a chained
multiplexed single-photon source. A unit cell is composed of a HSPS, an optical delay line, and a 2 X 2 switch. (b) Number of cells
required (dash line, right axis) to achieve a maximal probability of triggered single-photon emission g} . (plainline, left axis) asa
function of the switch loss. We chose a fractional efficiency of f= 0.9 to compute the required number of cells. Two regimes are plotted
corresponding to Puig = 0.1 (red) and Pyig = 0.25 (blue). (c) Comparison between the chained source (plain) and log tree (dashed)
triggered single-photon emission probability, as a function of switch loss, for two different regimes, p,,;, = 0.1 (orange) and

Puig = 0.25 (green). The optimal single-photon probability q 7 is plotted for both the chain source—for f= 1.0, corresponding to
the limit of an infinite number of cascaded cells—and for the log-tree source—using the optimal number of switches.

Dmax = psingle ndelay 1— (

of the chain is given by solving fq . = Pgoiedctay Prrigh :

*

9.1ain 18 given by summing the probabilities for each source to fire given that the subsequent ones do not, and
accounting for switching losses, which gives:

. N " n—1
9chain = psingle ﬂdelay Zptrig” < 1 - ptrig)

n=1
1- [(1 —pmg)n]N
1- (1 —pmg)n ‘

The maximal probability for emitting a single photon is obtained in the limit of an infinite chain
ptrig n

1= p[rig)yl

= psingle ”delayptrig n (2 1 )

.In practice, to operate at a fraction f of the maximal probability g, thelength

(-]

- (1 —ng)’? which gives:

In (1 —x)
ln[<1 —ptrig)n]

We show the single-photon emission probability g . with p, .71, = 1and the number of cells

N= (22)

required N as a function of the switchingloss for f= 0.9 in figure 6(b). As with the log tree architecture, the
required number of sources becomes impractical for small pyig, but can be kept below 8 when operating at
Puig = 0.25. The performance of the chained scheme compares well with the performance of the log tree, as

shown in figure 6(c). It has better performances for Puig = 01 (for a switch loss less than 1.6 dB) and is close to
the log-tree performances for p, ;. = 0.25.

The derivation for the exact probability of triggered single photon emission g..;, and the output state multi-

chain

photon contamination probability pryi are shown in appendix B.
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Figure 7. Left axis (plain lines): requirements for generating M single photons at a rate of 100 Hz, from a 100 MHz pulsed laser for two
different idler detection efficiencies. The red lines correspond to alumped detection efficiency of #; = 5, = 0.9. The bluelines
correspond to alumped detection efficiency of n; = #, = 0.99. (a) Maximum tolerable switch loss (per 2 X 2 switch) versus number
M oflog-tree MUX sources operated in parallel. Right axis (dashed lines): probability of multi-photon contamination in output state
from the M MUX sources when using the maximum tolerable switch loss. (b) Number of HSPSs required per MUX source in order to
meet the requirements in (a).

4. Discussion: generating M single photons using M multiplexed sources

Experiments with about eight single photons represent the current state-of-the-art photon number for SPDC
experiments in practice, so we will examine the performance of multiplexed sources for the generation

of >10 single photons in separate spatial modes. We first consider using M log-tree multiplexed sources to
generate M single photons at a rate of 100 Hz, assuming a pulsed laser seed with a repetition rate of 100 MHz,
number-resolving detectors, and p,,;, = 0.1. Figure 7 shows the maximum tolerable switch loss for generating
M single photons under these assumptions, and the resulting probability of multi-photon contamination in the
output state for this same switch loss. We considered two values for the lumped idler detection efficiency (which
includes filter loss), #; = 0.9 and 5, = 0.99, and assumed that this loss is also applied to the signal channel. We
see that with n; = 0.9 and switches with 1 dBloss (~0.794 transmission), 14 single photons can be generated at
the target 100 Hz rate with multi-photon contamination below 10% . Extending beyond this regime to perform
experiments with 20—40 photons with less than 10% multi-photon contamination requires #; ~ 0.99 lumped
idler detection efficiency with 2 x 2 switches having each <0.4 — 0.2 dBloss (~0.912 — 0.955 transmission).

Although these numbers are beyond what is attainable using the current state-of-the-art components, they
may be attainable in the near-to-mid-future with further development and integration. For reference, prototype
all-optical switches in fiber have demonstrated insertion loss of ~0.6 dB (~0.871 transmission) [32], on-chip
filters for sufficient pump suppression have demonstrated insertion loss of of ~0.8 dB (~0.832 transmission)
[33], and state-of-the-art single-photon detectors have demonstrated efficiencies 0f 0.93 [34]. Although the
single-photon detectors referenced in [34] are non-number-resolving and are limited to a deadtime of 40 ns, we
note that passive multiplexing techniques using arrays of detectors [35, 36] can achieve approximate number-
resolving capabilities and reduce deadtime. However, the exact effect of loss using these specific detector
architectures on multiplexed sources, and their resource requirements, is beyond the scope of this paper.

For applications requiring a very large number of single-photons (M > 40), such as the universal quantum
computer, error-correcting and loss-tolerant encodings can be used to achieve fault-tolerant computation,
provided the error rates are below required thresholds. Meeting these thresholds will require sources with the
highest single-photon emission probability and very low multi-photon contamination. We briefly consider
what is attainable with optimistic long-term goals for the performance of required hardware components.
Assuming 0.99 lumped idler detection efficiency, 2 X 2 switches with 0.98 transmission, and Ppair = 0.1, this
corresponds to a multiplexed single-photon source efficiency of 0.8744, a multi-photon emission probability of
0.0017,and 64 HSPSs per MUX source. Using p,,;, = 0.25, this increases the single-photon source efficiency to
0.8965 and reduces the resource requirements to 16 HSPS per MUX source, although at the cost of an increased
multi-photon contamination probability of 0.0083. Further research is necessary to translate these single- and
multi-photon emission probabilities into error rates for fault-tolerance in linear optical quantum computing,
and to optimize multiplexed source architectures for scalable quantum computation.
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5. Conclusion

In our analysis we have studied multiplexed single-photon sources with photon loss and inefficient detectors.
We derived expressions for single-photon emission probability and multi-photon contamination probability
using number-resolving and non-number-resolving detectors for a general HSPS and for three MUX
architectures: alog-tree switching scheme, a chained switching scheme, and a generalized MZI scheme.

Our findings indicate that number-resolving detectors offer a considerable advantage over threshold
detectors for MUX sources, and are essential for MUX sources with the highest efficiency. The performance of
the chained scheme compares well with the performance of the log tree, and has a simple logic requirements that
may be beneficial for a near-term implementation. The GMZ offers an alternative switching structure that
requires fewer phase modulators but more directional couplers than the other schemes.

All three of the architectures considered are capable of a high efficiency single-photon source with low multi-
photon contamination if the components are close to ideal. For example, with alog-tree architecture composed
of switches with <0.4 — 0.2 dBloss (~0.912—0.955 transmission) and number-resolving detectors with 99%
efficiency, a single-photon source capable of producing a 100 Hz rate of 20—40 photon states with less than 10%
multi-photon contamination is possible. Such a source would be a valuable resource for quantum technologies
such as the boson sampling machine and quantum simulators. With lower-loss switches and the high efficiency
detectors, a MUX source approaching the threshold requirements for a fully fault-tolerant universal quantum
computer should be possible. Further work is necessary to find the optimal multiplexing schemes which could
encompass the direct generation and multiplexing of multi-photon states or entangled resource states.
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Appendix A. Heralded single-photon source parameters derivation

Threshold detector
The source output state after accounting for losses is given by:
(o) n n n—p n—k
p=(1-1eR)| XIeP X Y chnp (1= n) k(1= n)" byl (23)

n=0 p=0k=0

where pAP, v = IP)ilk)s (pli (k|sand C* is the binomial coefficient.
The probability for the detector placed on the idler arm to trigger is given by summing all the contribution of
states having at least one photon. Starting with the reduced state after tracing out the signal mode:

Psgrn = 2 (ml;(1 - |é|2)[2|5|2"265nf(1 =) ool | 1m):
m=1 p=0

n=0

~—

=(1-1ep

n=1

iwniq’n;’(l - m)““’]
p=1
=(1-1P) imzn ic,fnf(l—m)”“’—(l—m)”
n=1 p=0

(s

=(1-1¢P) Z|5|2"(1—(1—m)")]

n=0
1 1

= — 2 — .
(l |§|) 1—|§|2 1_|§|2(1_’7i)

|§|2’7i

_ (24)
1-lgP(1 - 1)

trig TD =
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We can check the validity of the expression in the two extreme cases. If #; = 1, the probability to trigger is
maximal, p,;. = |£ P.Ifn; = Othen p;, = 0.
The heralded state in the signal arm is expressed, renormalizing by dividing by pyg, as:

1 — 62 © © n o n . .
ﬁHTD=< | |)Z<m|,-[2|§|2"226,5’n,f’(1—m) chnk(1-n) kﬁp,k] |m);
trigTD  m=1 n=0 p=0k=0
(1—|§|2) co n o n I i
=———=| YEr Yy e (1—n) T Cinf (1 =) 1Rk |-
ptrigTD n=1 p=1k=0

We can compute the probability that the heralded state is a single photon using p,; deTD = (s Pheraldedn 11)s:

(1-1e?)( & 1 L -
psingleTD = Z|§|2ncnns<1 - ’75) ZCfI’]lp(l - ’71)
trig TD n=1 p=1
1—|E?) (& _ .
= Call] )[Zlélz”@im(l -n) 1<1 - (1-m) )]
trig TD n=1

1—|&]? d _
:ﬂ |§|2[115 Zn |§|2(n—1)(1 _ ’75)” 1
n=1

trig TD

(=), SR (1) 1 - ni>"-1].

n=1

Using the identity (obtained from taking the derivative of the geometric series) Y™/ nx"~' =1 / (1 - x)%
I L—n
DPsingle TD = ( ) |§|2’75 ! 7 ( ’7) |
Puigto (1-1ep(1-n)) (1-1r(1=-n)(1-n))
[1 GRS m)][l —1eP(1-n)]
[1—ter(r-n)[r- 1P (1 -n)(1-m)]

In the lossless case, we obtain Psingle TD = ( 1 —|&P ), which, with a triggering probability Puig = |€? (from

psingleTD = (1 - |§|2)7’]5

equation (24)), is consistent with a probability of getting one photon of |£ [ ( 1 —|&P ) (from equation (1)).

The probability that the heralded state contains multi-photon contamination is derived as follows. First, we
define:

Zmw= Y, > (a m| p lg, m)

q=1m=1

=(1-1£P) iwnzzcnpnf(l — ;) T Chnk(1 - ns)""‘]

=(1-1¢P) §I§I2”<1 -1 —'71-)”)(1 -(1 "75)")]

g|§|2"<1 c(t=n) (1=n) = (1=n) - (1 _,75)">)
1 (l—ﬂs)(l—m) (1—%) (1_’75> ]

~—

=(1-ep

=(1-|EP) |EP a - '
(1= 1) tel o leP Ui ( ) (1-n) - leF(1-n) 1 1EF(1-n)

Then it follows that p, in = Yoo (1 Preraided tn 17150

Zm
Prouitp = - psingle TD* (26)
p trig TD
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Number-resolving detector
Now we consider the number-resolving detector. Starting with equation (2), tracing out the signal mode and
calculating the probability to get only one photon:

ptrigNRD:<1|i(1 - |5|2)[i|5|2nicf’7ip(l - ﬂi)n_p |P>i<P|i] |1)i

n=0 p=0
=(1- |§|2)[i|é|2"cim(l - m)"_l]
n=1
=(1-1p) |§|2n,-[§|5|“”‘”n(1 - n,.)"‘l].
1= |EP) &P
PuignrDp = ( ) - @7

(1= (1 =m)1er)

We can check the validity of the expression in the two extreme cases. If ; = 1, the probability to trigger is
maximal, p, = (1 = [€F) [€P.1f7,=0then p;. = 0.
The corresponding heralded state is:

1_|§|2 o0 n n . .
Prnrp = ( )<1|i[2|5|2"2265n;’(1 —n) ik (1 - n) kﬁp,k] 11);
trig NRD n=0 p=0k=0
=P (& nt .
L )ni[2|:|2"n(1 —n) 7 Yk (1 =) |k>s<k|sJ.
n=1 k=0

trig NRD

Asin the previous case, We can compute the probability that the heralded state is a single photon using

psingle NRD — <1 |5 ﬁheralded TD | 1>S:

1—[¢]? & e .
psingleNRD = ( I I )7]1(2|§|2nn(1 - ’71) 1”’751<1 - ’75) 1]
n=1

trig NRD

(1 - Ié:lz) 2| 3,2 -l " gpe-n
= nn, 1ER| Don (1 - m) (1 - 115) €] :
trig NRD n=1
. [«3] 2.n—1 _ oo -1 oo -1 _ 2x .
Using )7 n’x" =3 n(n— Dx""'+ X7 nx""' = T oo

=(1-(1-n)1eP) (1+(=m)(1-n)ier)
Dgingle NRD = ( ( ’71) 14 ) ’75[ (1 B (1 B m)(l B ,75> |€|2)3 ]

The probability that the heralded state contains multi-photon contamination is derived as follows. First, we define:

ZNRD = Z(l,m|ﬁ 1, m)

_ Z?— |5|2)(glflz”écim(l - ) et (1 - ns)n_k]
~ (1 - IeF) |:|2[n,§|5|2<”—“n(1 -7 (1= (0 _"s)n))

=(1— |EP 2. 1 _ (1_’75)
"o e 1[(1I§I2(1'7,-))2 (1|:|2(1m)(1n5))2]

_ (1= 12R) 1£Pnn, [1_(1_,15)“2(1_%))2]'
(1-ter(1-n) Y| (1=1eP(1=n)(1-n))
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Then it follows that the probability that the heralded state contains multi-photon contamination is given by
(o) A
Pt NRD = Dz {5 Pheralded nrp 11)s:

ZNRD
PrutiNRD = 7~ Psingle NRD- (28)
Prig NRD
2
1-(1- ns)(lflz(l - m))
Prtti NRD = s 7 = Psingle NRD -

(1-1er(1=m)(1-n))

Appendix B. Chain source derivation

The exact probability of single-photon emission g..;, can be calculated as follows. The state from a chain of N
sources is:

N-1 j
D = ZptrigD<1 _ptrigD> ij’
j=0

where p; , is the state heralded by an individual HSPS for which the signal arm goes through j + 1switches each
having transmission 7, and D is the type of detector (TD for threshold detector or NRD for number resolving
detector).

For anumber resolving detector:

1 - & & .\ e
ﬁjNRD—( ) (2|§|2n ( - ) ch( 77]+1)( (’75’7]+1)) k|k>s<k|s
trig NRD
For a threshold detector:
5 it n— . . n—
/sjm—( <) 2|5|2"22cnm (1= ) " CE ) (1= (m ) )™ houcel,
trig TD n=1 p=1k=0

The probability that the MUX source triggers is given by:

chain __ 1 1 N
p g -P trig | *

The probability of single-photon emission conditioned on the MUX source triggering is given by:

chain  __
psingle D~ chaln < | pD | 1>5
trig

i
= " chain zpng(l _ptrigD>psinglejD’
trig  j=0
where p; .. ; p is the probability of single-photon emission for an individual HSPS heralding the state Pip
(calculated in the same way as in section 2 but using ; 1, ). Then we have:

chain chain
9chainD = psmgle D ptrlg D

The probability of multi photon contamination conditioned on the MUX source triggering is given by:

hai j
pr;u?t? = chain zptngD (1 - ptrigD) pmultij D> (29)

trig  j=0
with

(s8]
pmultijD: Z(mls /A)]D |m>s

m=2

= ZjD - psinglejD’

where Z;  is the normalization constant for an individual HSPS heralding the state iD (calculated in the same
way as in section 2 but using p; ;) Then we can rewrite (29) as:
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chain
chain __ D _ 4 chain
pmulti — _ chain psingle D’
trig
where
N-1 .
Zchain — 1 _ J Z
D - ptrigD ptrigD jD-
j=0
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